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Abstract

Sample-size requirements were considered for automated essay scoring in cases in which the

automated essay score estimates the score provided by a human rater. Analysis considered

both cases in which an essay prompt is examined in isolation and those in which a family

of essay prompts is studied. In typical cases in which content analysis is not employed and

in which the only object is to score individual essays to provide feedback to the examinee,

it appears that several hundred essays are sufficient. For application of one model to a

family of essays, fewer than 100 essays per prompt may often be adequate. The cumulative

logit model was explored as a possible replacement of the linear regression model usually

employed in automated essay scoring; the cumulative logit model performed somewhat

better than did the linear regression model.
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Automated essay-scoring programs such as e-rater R© (Attali, Burstein, & Andreyev,

2003; Burstein, Chodorow, & Leacock, 2004) use samples of essays that have been scored

by human raters in order to estimate prediction equations in which the dependent variable

is a human essay score obtained by an examinee on an essay prompt and the independent

variables are computer-generated essay features for that essay. The prediction equations

may be applied to predict human scores on essays in which the computer-generated features

are available but no human scores exist. Prediction may be based on linear regression, as

is currently the case with e-rater, or may be based on techniques such as cumulative logit

analysis (Haberman, 2006).

A basic question to consider with automated essay scoring is the sample size required

for satisfactory estimation of the prediction equations. Currently, the e-rater V.2 software

(Attali & Burstein, 2006) requires a sample size of 500 to build the regression model

and another sample of 500 to cross-validate the regression model. Interestingly, after

cross-validation, the model is not re-estimated. The processing waits until the pre-assigned

sample size is reached. The sample-size selection problem may be addressed by use of the

cross-validation techniques described in Haberman (2006); however, some variations on

the approach are appropriate when a family of essay prompts is available rather than a

single essay prompt. In addition, some added variations are reasonable to consider to avoid

problems with outliers.

Some of the methodologies discussed in this paper were discussed in Haberman (2006),

and this paper follows Haberman (2006) in its use of mean-squared error to assess prediction

quality. This emphasis on mean-squared error reflects common statistical practice with

linear estimation and reflects the common practice in testing of adding item scores in

assessments. However, this paper expands the methods of Haberman (2006), provides

applications of the methods to a wider number of prompts, and discusses the application of

the methods discussed in Haberman (2006) to a family of essay prompts.

Section 1. describes the data used in this work. Section 2. considers some basic screens

for outliers in essay features that may cause distortions in analysis. Section 3. describes

use of deleted residuals to assess prediction accuracy and to estimate the loss of precision
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expected for a given sample size. In this section, applications are made to four prompt

families for several different approaches based on linear regression. In section 4., alternative

analysis based on cumulative logit models is considered. Some practical conclusions are

provided in section 5.. Familiarity with standard works on regression analysis (Draper &

Smith, 1998; Weisberg, 1985) and classical test theory (Lord & Novick, 1968) is helpful in

reading this report.

1. Data

The data used in the analysis are four groups of prompts. Group 1 consists of 74

prompts associated with a particular licensure test, Group 2 includes 14 prompts from

a discontinued test of knowledge of English for examinees whose native language is not

English, Group 3 comprises 26 prompts for a graduate admissions examination, and Group

4 uses 16 practice prompts for a test of knowledge of English administered to examinees

whose native language is not English. For each prompt, about 500 essays are available.

In Group 1, human scores are on a 4-point scale, and only a small number of essays are

double-scored. Groups 2 and 3 use double-scoring and have a 6-point scale, while Group 4

has double-scoring and a 5-point scale. In all cases, 1 is the lowest score for a valid essay.

As a consequence, no ratings out of the range of a valid essay were used in this study.

In the analysis in this report, predictors used were logarithm of number of discourse

elements (logdtu), logarithm of average number of words per discourse element (logdta),

minus the square root of the number of grammatical errors detected per word (nsqg), minus

the square root of the number of mechanics errors detected per word (nsqm), minus the

square root of the number of usage errors detected per word (nsqu), minus the square root

of the number of style errors detected per word (nsqstyle), minus the median Standard

Frequency Index of words in the essay for which the index can be evaluated (nwfmedian),

and average word length (wordln2). Features were based on those used in e-rater Version

7.2 for models without content vector analysis. The signs were selected so that the normal

sign of the corresponding regression coefficient would be positive.
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Table 1.
Frequency of Essays With Fewer Than 25 Words

Number Fraction
Number very short very short

Group in group in group in group
1 37,000 346 0.0094
2 6,384 0 0.0000
3 12,251 117 0.0096
4 8,036 41 0.0051

2. Outlier Screens

It is prudent in any analysis of essays to exclude submissions that are too short to

be meaningful and those with feature outliers that suggest major typing errors. As in

Haberman (2006), the rule was adopted that any essay considered must have at least

25 words. This restriction removes many cases in which essay features exhibit unusual

behavior. An added rule was adopted that no essay in which the average word length

exceeded 7.5 characters be considered. The issue here is that such a case is likely to involve

an error by the writer in using the keyboard. For example, it may occur if the space bar is

not used properly.

The restriction on number of words involves an appreciable number of essays, as is

evident in Table 1.

Except in Group 1, all human scores for essays with no more than 25 words received

the lowest possible score. In Group 1, 8 cases of 346 received human scores of 2 rather than

1. In contrast, for essays with at least 25 words in Group 1, only about 13% received scores

of 1.

The restriction on average word length affected very few essays. In the case of Group

1, two such essays arose, and one essay appeared in Group 3. All received scores of 1 and

also had no more than 25 words.

An alternative check on outliers involved an examination of standardized values of

variables that exceeded 4 in magnitude. The standardization was conducted for all essays
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for a prompt after removing those essays with no more than 25 words. In examining results,

it is helpful to note that a feature with a normal distribution would yield standardized

values of magnitude four or greater with probability 0.00006. Observed rates were somewhat

higher for most features, as is evident in Table 2; however, the results were not unusual

for relatively conventional distributions. For example, under a logistic distribution, the

probability of a standardized value of magnitude at least 4 is 0.0014. For an exponential

distribution, this probability is 0.0183. The results of regression analysis described in this

paper provided no compelling reason to remove outliers other than essays with fewer than

25 words or an average word length above 7.5. In general, outliers must be rather extreme

before they have significant impact on the analysis in this report. This impact normally will

be evident through the analysis of variance inflation in Section 3.. Outliers are a concern

if the estimated variance inflation is much higher than usually encountered for a given

sample size and number of predictors; however, as already indicated, no case requiring

consideration of outliers was encountered that is not associated with average word length

or number of words in the essay.

3. Sample-Size Determination for the Linear Regression Model

In the case of linear regression, deleted residuals provide a basic method for assessing

the accuracy of predicting results of human scoring when applied to data not used to

estimate regression parameters (Haberman, 2006). In essence, deleted residuals provide an

approach to cross-validation that requires only minimal computations and provides much

higher accuracy than primitive approaches in which half a sample is used to construct a

model and half a sample is used to examine prediction quality. We will first lay out the

statistical model for essay scoring and provide expressions for several mean-squared errors,

proportional reductions, and relative increases in mean-squared error that are crucial in

sample-size determination. We will then discuss how to estimate the above mentioned

quantities using deleted residuals.
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Table 2.
Frequency of Outliers

Number Fraction
Number of outliers of outliers

Group Variable in group in group in group
1 logdta 36,697 43 0.0012
1 logdtu 36,697 0 0.0000
1 nwfmedian 36,697 104 0.0028
1 nsqg 36,697 86 0.0023
1 nsqm 36,697 196 0.0053
1 nsqu 36,697 104 0.0028
1 nsqstyle 36,697 3 0.0001
1 wordln2 36,697 31 0.0008
2 logdta 6,384 14 0.0024
2 logdtu 6,384 0 0.0000
2 nwfmedian 6,384 9 0.0014
2 nsqg 6,384 15 0.0024
2 nsqm 6,384 14 0.0022
2 nsqu 6,384 16 0.0025
2 nsqstyle 6,384 0 0.0000
2 wordln2 6,384 2 0.0003
3 logdta 12,143 18 0.0015
3 logdtu 12,143 5 0.0004
3 nwfmedian 12,143 3 0.0002
3 nsqg 12,143 26 0.0021
3 nsqm 12,143 28 0.0023
3 nsqu 12,143 17 0.0014
3 nsqstyle 12,143 0 0.0000
3 wordln2 12,143 5 0.0004
4 logdta 7,997 6 0.0008
4 logdtu 7,997 3 0.0004
4 nwfmedian 7,997 17 0.0021
4 nsqg 7,997 9 0.0011
4 nsqm 7,997 9 0.0011
4 nsqu 7,997 7 0.0009
4 nsqstyle 7,997 0 0.0000
4 wordln2 7,997 6 0.0008
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3.1 The Statistical Model

Consider a random sample of essays i, 0 ≤ i ≤ n. For some positive integer q < n− 1,

for essay i, let Yij be the holistic score provided by reader j, 1 ≤ j ≤ mi, mi ≥ 1, and let

Xi be a q-dimensional vector with coordinates Xik, 1 ≤ k ≤ q, that are numerical features

of the essay that have been generated by computer processing. For example, Xi1 might

be the observed logdta for essay i, and q might be 8. Let Ȳi be the average of the Yij,

1 ≤ j ≤ mi. Assume that the holistic scores are integers from 1 to G for an integer G ≥ 2,

and assume that the Xik all have finite fourth moments and that the covariance matrix

Cov(X) of Xi is positive-definite. In the simplest cases, mi is a fixed value m for all essays.

More generally, the mi are independent random variables that are independent of the Xik

and Yij and each mi ≤ m for some given integer m ≥ 1. In typical applications, details of

the rating process are quite limited, so that it is appropriate to assume that independent

and identically distributed random variables Ti, the true essay scores, exist such that

Yij = Ti + eij,

Ti has positive finite variance σ2
T , and the scoring errors eij are all uncorrelated, have mean

0, have common positive variances σ2, and are uncorrelated with Ti and the Xik’s.

The assumptions on the errors can be violated if the same rater scores many essays

from many examinees and if the conditional distribution of eij depends on the specific rater

who provides score j for essay i. Because virtually all data involve far fewer raters than

examinees, the assumptions on the eij are not entirely innocuous. Without data in which

raters are identified, it is impossible to investigate the implications of assignment of the

same rater to many essays. It appears that the methods used in this report can still be used

if the probability that two essays receive the same rater is the same for all pairs of essays.

A further possible violation of assumptions arises when essay features Xik are used that

depend on properties of essays other than essay i. This issue arises in practice in e-rater

when content vector analysis is considered. The approach in this report does not apply to

features associated with content vector analysis (Attali & Burstein, 2006).

Consider use of ordinary least squares with essays i from 1 to n to estimate the
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coefficients α and βk, 1 ≤ k ≤ q, that minimize the mean-squared error

σ2
d = E(d2

i ) (1)

for

di = Ȳi − T ∗i ,

where

T ∗i = α +

q∑
k=1

βkXik.

Let β denote the q-dimensional vector with coordinates βk, 1 ≤ k ≤ q. The estimate a of α

and the estimates bk of βk minimize the residual sum of squares

Sr =
n∑

i=1

r2
i ,

where

ri = Ȳi − T̂i

and

T̂i = a+

q∑
k=1

bkXik.

The estimates a and bk are uniquely determined if the sample covariance matrix

Ĉov(X) of the Xi, 1 ≤ i ≤ n, is positive definite. In case the estimates are not unique, then

they may be chosen both to minimize Sr and to minimize a2 + b′b (Rao & Mitra, 1971,

p. 51). Under the above mentioned assumptions on the rater errors eij, the mean-squared

error of

dT i = Ti − T ∗i

is

σ2
dT = E([dT i]

2),

and

σ2
d = E(Ȳi − Ti + Ti − T ∗i )2 = E(Ti − T ∗i )2 + E(Ȳi − Ti)

2 = σ2
dT + σ2/mH , (2)

where mH = 1/E(1/mi) is the harmonic mean of mi. If each mi is m, then E(1/mi) = 1/m

(Haberman, 2006). The mean-squared error σ2
d defined in Equation 1 is the smallest
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mean-squared error achievable by linear prediction of Ȳi by Xi when the joint covariance

matrix of Ȳi and Xi is known. Similarly, σ2
dT is the smallest mean-squared error achievable

by linear prediction of the true essay score Ti by Xi. Conditional on the use of M raters, so

that mi = M > 0, the smallest mean-squared error achievable by linear prediction of Ȳi by

Xi is

σ2
dM = E(d2

i |mi = M) = σ2
dT + σ2/M.

To judge the effectiveness of linear regression, it is often helpful to compare the

mean-squared error achieved by a trivial prediction of Ȳi or Ti in which a constant predictor

α is used. The best choice of α for both cases is E(Ȳi) = E(Ti). The mean-squared error

for prediction of Ȳi by E(Ȳi) is the variance σ2
Y b of Ȳi, and the mean-squared error for

prediction of Ti by E(Ti) is the variance σ2
T of Ti. Clearly

σ2
Y b = σ2

T + σ2/mH . (3)

The proportional reduction of mean-squared error achieved by linear prediction of Ȳi by T ∗i

instead of by E(Ȳi) is then

ρ2
Y b =

σ2
Y b − σ2

d

σ2
Y b

. (4)

In the case of linear prediction of Ti, the proportional reduction of mean-squared error in

predicting Ti by T ∗i instead of by E(Ti) is

ρ2
T =

σ2
T − σ2

dT

σ2
T

=
σ2

Y b − σ2/mH − σ2
d + σ2/mH

σ2
T

=
σ2

Y b − σ2
d

σ2
T

= ρ2
Y bσ

2
Y b/σ

2
T ,

using Equations 2, 3, and 4. Note that σ2
T is less than σ2

Y b, so that ρ2
T exceeds ρ2

Y b.

Conditional on mi = M > 0, the mean-squared error for prediction of Ȳi by E(Ȳi) is

σ2
Y bM = E([Ȳi − E(Ȳi)]

2|mi = M) = E([Ti − E(Ti)]
2) + E([Ȳi − Ti]

2)2 = σ2
T + σ2/M,

so that the proportional reduction in mean-squared error in predicting Ȳi by Xi instead of

by E(Ȳi) is

ρ2
Y bM =

σ2
Y bM − σ2

dM

σ2
Y bM

= ρ2
Y bσ

2
Y b/σ

2
Y bM .

The relationship of ρ2
Y b to ρ2

Y bM depends on whether M exceeds mH .
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3.2 Inflation of Mean-Squared Error

Cross-validation entails evaluation of the conditional mean-squared error

τ 2
r0 = E(r2

0|Xi, 1 ≤ i ≤ n)

for prediction of Ȳ0 by T̂0 given the predictors Xi, 1 ≤ i ≤ n. The important issue is that

r0 = Ȳ0 − T̂0 is the prediction error of the average score Ȳ0 based on the predicted average

T̂0, where T̂0 employs the predictors from essay 0 but has estimates a and bk developed from

essays 1 to n. Let fi = T̂i− T ∗i be the difference between the estimated best linear predictor

T̂i and the actual best linear predictor T ∗i , and let

τ 2
f0 = E(f 2

0 |Xi, 1 ≤ i ≤ n).

It can be shown that

τ 2
r0 = σ2

d + τ 2
f0 > σ2

d. (5)

As the sample size n becomes large, standard large-sample arguments as in Box (1954) and

Gilula and Haberman (1994) can be used to prove that nτ 2
f0 converges with probability 1 to

p = σ2
d + tr([Cov(X)]−1 Cov(dX)), (6)

where tr is the trace operator and Cov(dX) is the covariance matrix of diXi. In the special

case in which dT i is independent of Xi, p = (q + 1)σ2
d (Haberman, 2006), and nτ 2

f0 is p

whenever the sample covariance matrix of the Xi, 1 ≤ i ≤ n, is positive definite. More

generally, if c1 is the minimum possible conditional expectation E(d2
i |Xi) of d2

i given Xi

and c2 is the maximum possible conditional expectation E(d2
i |Xi) of d2

i given Xi, then p is

between (q + 1)c1 and (q + 1)c2. Note that for di independent of Xi, c1 = c2 = σ2
d, so that

the general result indeed implies that p = (q + 1)σ2
d.

Consider the relative increase

I = τ 2
r0/σ

2
d − 1

in conditional mean-squared error due to parameter estimation (i.e., due to estimation

of Ȳ0 by T̂0 instead of by T ∗0 ). This relative increase, which may be termed inflation in
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mean-squared error, plays a key role in the methodology considered in this report. The

relative increase I is (q + 1)/n if, for each essay i, dT i is independent of Xi and Xi has

a positive-definite sample covariance matrix. More generally, with probability 1, nI has

a limit between (q + 1)c1/c2 and (q + 1)c2/c1. Note that c1 = c2 = σ2
d if the standard

regression assumptions hold, so that the general formula is consistent with the fact that

nI = q + 1 if the sample covariance matrix of the Xi, 1 ≤ i ≤ n, is positive-definite. For

instance, if q = 8 as in the e-rater example, then a sample size of 360 would be expected to

yield a relative increase in mean-squared error of 2.5% if standard regression assumptions

hold and the Xi, 1 ≤ i ≤ n, have a positive-definite covariance matrix.

Computations of relative increases in mean-squared error must be modified to some

extent to study the increase prediction error for the true essay score Ti. In this case,

consider the error

rT i = Ti − T̂i.

The conditional mean-squared error

τ 2
rT0 = E([rT0]

2|Xi, 1 ≤ i ≤ n)

is compared to E([Ti − T ∗i ]2)2 = σ2
dT . Because

τ 2
rT0 = σ2

dT + τ 2
f0,

the relative increase

IT = τ 2
rT0/σ

2
dT − 1

is equal to Iσ2
d/σ

2
dT > I.

Similar arguments can be applied to the relative increase IM in mean-squared error

for approximation of Ȳ0 conditional on m0 = M > 0. Given m0 = M, the conditional

mean-squared error

τ 2
rM0 = E([Ȳ0 − T̂0]

2|Xi, 1 ≤ i ≤ n,m0 = M) = τ 2
rT0 + σ2/M

for predicting Ȳ0 by T̂0 is compared to the conditional mean-squared error σ2
dM for prediction

of Ȳ0 by T ∗0 . The relative increase in mean-squared error, IM , is defined as

IM = τ 2
rM0/σ

2
dM − 1.
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3.3 Estimation of τ 2
r0 Using the Predicted Residual Sum of Squares (PRESS)

Statistic

Estimation of mean-squared errors may be accomplished by use of deleted residuals

or by some modification of standard results from the decomposition of sums of squares

associated with regression analysis. The former approach is simpler to employ in terms of

exploitation of commonly available software, although the latter approach is more efficient

computationally. For each essay i, let I(i) be the set of integers 1 to n that are not i. The

deleted residual d(i) (Neter, Kutner, Nachtsheim, & Wasserman, 1996, pp. 372–373) is the

difference Ȳi − T̂(i), where

T̂(i) = a(i) +

q∑
k=1

bk(i)Xik

and a(i) and bk(i) are found by minimizing the sum of squares

∑
j∈I(i)

[
Ȳj − a(i) −

q∑
k=1

bk(i)Xjk

]2

in which data from essay i are omitted. Computation of d(i) involves minimal work, for

d(i) = ri/(1− hii),

where

hii = n−1 + (Xi − X̄)′C−1(Xi − X̄)

is the ith diagonal element of the hat matrix (Draper & Smith, 1998, pp. 205–207), the

vector of sample means of essay variables is

X̄ = n−1

n∑
i=1

Xi,

and the matrix of corrected sums of cross products is

C =
n∑

i=1

(Xi − X̄)(Xi − X̄)′.

Deleted residuals are commonly computed by standard software packages such as SAS.

Given deleted residuals, τ 2
r0 may be estimated by the PRESS (Neter et al., 1996, pp.
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345–346) sum of squares

s2
r0 = n−1

n∑
i=1

d2
(i).

The scaled difference n[E(s2
r0|Xi, 1 ≤ i ≤ n) − τ 2

r0] converges to 0 with probability 1, and

n1/2(s2
r0 − τ 2

r0) converges in distribution to the variance of d2
i . Alternatively, application of

an expansion of 1/(1− hii)
2 shows that τ 2

r0 can be estimated by

τ̂ 2
r0 = s2

r

(
1 +

2

n

)
+ 2 tr([Ĉov(X)]−1Ĉov(dX)), (7)

where

s2
r = n−1

n∑
i=1

r2
i

is the residual sum of squares divided by n, Ĉov(X) is the sample covariance matrix of

the Xi, 1 ≤ i ≤ n, and Ĉov(dX) is the sample covariance matrix of the diXi, 1 ≤ i ≤ n.

In case Ĉov(X) is singular, the Moore-Penrose inverse can be used. The scaled difference

n(s2
r0 − τ̂ 2

r0) converges in probability to 0.

3.4 Estimation of τ 2
rT0 and τ 2

rM0

Estimation of τ 2
rT0 may be accomplished if the probability is positive that some mi

exceeds 1. If mi is not constant and if the conditional variance of eij given Ti or Xi is not

assumed constant, then estimation is more complicated. A consistent estimate of σ2 is

provided by

σ̂2 = n−1
J

∑
i∈J

(mi − 1)−1

mi∑
j=1

(Yij − Ȳi)
2,

where J is the set of integers i, 1 ≤ i ≤ n, with mi > 1, and nJ is the number of integers

i in J . If all mi are equal, then σ̂2 is just a within-groups mean-squared error from a

one-way analysis of variance. If J is empty, then σ̂2 may be set to 0; however, such an

estimate is obviously not satisfactory. As the sample size n becomes large, σ̂2 converges

with probability 1 to σ2. Given σ̂2, τ 2
rT0, which can be shown to be equal to τ 2

r0 − σ2/mH ,

can be estimated by

s2
rT0 = s2

r0 − σ̂2
e ,
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where

σ̂2
e = σ̂2/m̂H

and m̂H is the sample harmonic mean of the mi, 1 ≤ i ≤ n. One may also substitute τ̂ 2
r0 for

s2
r0. In like manner,

s2
rM0 = s2

rT0 + σ̂2/M

may be used to estimate τ 2
rM0, the conditional mean of r2

0 given m0 = M .

3.5 Estimation of σ2
d, σ2

dT , and Inflations of Mean-Squared Error

As proved in the appendix, an estimate of σ2
d is

s2
d = (s2

r + s2
r0)/2.

The more conventional estimate ns2
r/(n− q − 1) of σ2

d is not appropriate if the residual

di and predictor Xi are not independent. In general n1/2(s2
d − σ2

d) has the same normal

approximation as n1/2(s2
r0 − τ 2

r0), and n[E(s2
d|Xi, 1 ≤ i ≤ n) − σ2

d] converges to 0 with

probability 1. It then follows that the relative increase I in mean-squared error can be

estimated by

Î =
s2

r0 − s2
r

s2
r0 + s2

r

.

It also follows that an estimate of the value of I achieved if n∗ observations are used rather

than n is Î∗ = nÎ/n∗. This estimate provides a guide to sample-size selection. Note that if

the standard regression assumptions hold, then it can be asserted without performing any

estimation that nI will be close to q + 1. However, in a real application, where one rarely

knows whether the regression assumptions are true, it is recommended that I be estimated

by Î and that the estimates Î and Î∗ guide the process of sample-size selection.

If mi > 1 with positive probability, then, using Equation 2, σ2
dT may be estimated by

s2
dT = s2

d − σ̂2
e ,

and IT may be estimated by

ÎT =
s2

rT0 − s2
dT

s2
dT

.
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Similar arguments apply to estimation of IM . The estimate of σ2
dM is s2

dM = s2
dT + σ̂2/M , so

that IM has estimate

ÎM =
s2

rM0 − s2
dM

s2
dM

.

3.6 Estimation of Proportional Reduction in Mean-Squared Error Using

Cross-Validation

Proportional reduction in mean-squared error may also be considered in terms of

cross-validation, for which results are especially simple when Ȳ0 is approximated by the

sample mean Ȳ of the Ȳi, 1 ≤ i ≤ n. The error r0C = Ȳ0 − Ȳ has mean 0 and variance

τ 2
r0C = σ2

Y b(1 + n−1).

Estimation can be accomplished by use of the conventional estimate

s2
Y b = (n− 1)−1

n∑
i=1

(Ȳi − Ȳ )2

for σ2
Y b, so that τ 2

r0C is estimated by

τ̂ 2
r0C = s2

r0C(1 + n−1).

Use of deleted residuals results in the estimate

s2
r0C = [n2/(n2 − 1)]τ̂ 2

r0C .

Thus for estimation of Ȳ0, the proportional reduction

ρ2
Y b0 =

τ 2
r0C − τ 2

r0

τ 2
r0C

in mean-squared error achieved by linear prediction of Ȳ0 by T̂0 instead of by Ȳ is estimated

by

ρ̂2
Y b0 =

s2
r0C − s2

r0

s2
r0C

.

As the sample size n increases, ρ̂2
Y b0 converges with probability 1 to ρ2

Y b, and ρ2
Y b0 converges

to ρ2
Y b. Similar approximations are available for ρ2

T0 and ρ2
Y b0M . The mean square of
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rT0C = T0 − Ȳ is τ 2
rT0C = τ 2

r0C − σ2/mH , and the conditional variance of r0C given mi = M

is τ 2
rM0C = τ 2

rT0C + σ2/M . The estimate of τ 2
rT0C is then s2

rT0C = s2
r0C − σ̂2/m̂H , and the

estimate of τ 2
rM0C is s2

rT0C + σ̂2/M . Hence,

ρ2
T0 =

τ 2
rT0C − τ 2

rT0

τ 2
rT0C

,

the proportional reduction in mean-squared error achieved by linear prediction of T0 by T̂0

instead of by Ȳ , is estimated by

ρ̂2
T0 = ρ̂2

Y b0

s2
r0C

s2
rT0C

,

and

ρ2
M0 =

τ 2
rM0C − τ 2

rM0

τ 2
rM0C

is estimated by

ρ̂2
M0 = ρ̂2

Y b0

s2
r0C

s2
rM0C

.

3.7 A Practitioner’s Guide: What Quantities To Examine in a Real

Application?

Table 3 lists all the residuals, sums of squares, inflations of mean-squared error, and

proportional reductions described above. An important question, given so many different

quantities, is the following: Which of these quantities should we use and how in a real

application? The answers are quite closely linked to answers found in regression analysis,

and depends on the goal of the user of the methodology. We will discuss three potential

users and describe the quantities each would be interested in. Estimates and interpretations

are considered for the first prompt in the second group to illustrate their application.

User 1: One who wants an idea of the errors when two raters are used. The parameter

σ2
d measures the mean-squared error for prediction of an average holistic score by observed

essay features in the case in which the regression coefficients are known. Thus σ2
d is a

lower bound on the mean-squared error that can possibly be achieved when the regression

coefficients are estimated from a sample of essays. If σ2
d is regarded as too large for the

application, then no amount of sampling can lead to a satisfactory linear prediction of the

average holistic score. For the above mentioned prompt, the estimate s2
d of σ2

d may be found
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Table 3.
All Residuals, Sums of Squares, Variance Inflations, and Proportional

Reductions

Quantity Definition Notes
di Ȳi − T ∗i
ri Ȳi − T̂i

dT i Ti − T ∗i
rT i Ti − T̂i

r0C Ȳ0 − Ȳ
rT0C T0 − Ȳ
σ2

d E(d2
i ) σ2

d = σ2
dT + σ2/mH

σ2
dT E(d2

T i)
σ2

dM E(d2
i |mi = M) σ2

dM = σ2
dT + σ2/M

σ2
Y b E([Ȳi − EȲi]

2) σ2
Y b = σ2

T + σ2/mH

σ2
Y bM E([Ȳi − EȲi]

2|mi = M) σ2
Y bM = σ2

T + σ2/M
τ 2
r0 E(r2

0|Xi, 1 ≤ i ≤ n)
τ 2
rT0 E(r2

T0|Xi, 1 ≤ i ≤ n)
τ 2
rM0 E(r2

0|m0 = M,Xi, 1 ≤ i ≤ n) τ 2
rM0 = τ 2

rT0 + σ2/M
τ 2
r0C E(r2

0C) τ 2
r0C = σ2

Y b(1 + 1/n)
τ 2
rT0C E(r2

T0C) τ 2
rT0C = τ 2

r0C − σ2/mH

τ 2
rM0C E(r2

0C |m0 = M,Xi, 1 ≤ i ≤ n) τ 2
rM0C = τ 2

rT0C + σ2/M

I τ 2
r0/σ

2
d − 1 RI:Ȳ0, T̂0, T

∗
0

IT τ 2
rT0/σ

2
dT − 1 RI: T0, T̂0, T

∗
0

IM τ 2
rM0/σ

2
dM − 1 Given m0 = M , RI: Ȳ0, T̂0, T

∗
0

ρ2
Y b (σ2

Y b − σ2
d)/σ2

Y b PRMSE: Ȳi, T
∗
i , E(Ȳi)

ρ2
T (σ2

T − σ2
dT )/σ2

T PRMSE: Ti, T
∗
i , E(Ti)

ρ2
Y bM ρ2

Y bM = ρ2
Y bσ

2
Y b/σ

2
Y bM Given m0 = M , PRMSE: Ȳi, T

∗
i , E(Ȳi)

ρ2
Y b0 (τ 2

r0C − τ 2
r0)/τ

2
r0C PRMSE: Ȳ0, T̂0, Ȳ

ρ2
T0 (τ 2

rT0C − τ 2
rT0)/τ

2
rT0C PRMSE: T0, T̂0, Ȳ

ρ2
M0 (τ 2

rM0C − τ 2
rM0)/τ

2
rM0C Given m0 = M , PRMSE: Ȳ0, T̂0, Ȳ

Note. “PRMSE: a, b, c” means the proportional reduction in mean-squared error by predic-
tion of a by b compared to prediction of a by c. “RI: d, e, f” means the relative increase in
mean-squared error, conditional on Xi, 1 ≤ i ≤ n, due to estimation of d by e compared to
estimation of d by f .
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in the following fashion from regression output from SAS. The estimated root mean-squared

error [
(n− q − 1)−1

n∑
i=1

r2
i

]1/2

= 0.5725,

where n is 373 and q is 8. It follows that

s2
r = n−1

n∑
i=1

r2
i =

n− q − 1

n
(0.5725)2 = 0.3198.

The PRESS sum of squares
2∑

i=1

d2
(i) = 125.5,

so that

s2
r0 = n−1

n∑
i=1

d2
(i) = 0.3364.

It follows that

s2
d = (s2

r + s2
r0)/2 = (0.3198 + 0.3364)/2 = 0.3281.

By itself, this estimate does not suggest a precise approximation to the average human

score, for the square root sd of s2
d is 0.5728, and the underlying measurements are on a

6-point scale. Nonetheless, alternatives must be considered to provide a proper perspective.

The simplest alternative measure is σ2
Y b, the mean-squared error for prediction of

the average holistic score when the mean holistic score is known and no essay features

are employed in the prediction. The estimate s2
Y b is the square 0.9496 of the sample

standard deviation 0.9745 of the Ȳi that is reported by SAS. Thus the estimate s2
d of the

mean-squared error σ2
d is somewhat smaller than is the estimate s2

Y b associated with a trivial

constant predictor. The coefficient ρ2
Y b then is the proportional reduction in mean-squared

error achieved by prediction of the average holistic score by use of a regression on essay

features in which all population means, variances, and covariances are known. The estimate

of ρ2
Y b is

1− s2
d/s

2
Y b = 1− 0.3281/0.9496 = 0.6545,

so that the regression analysis is predicted to be much more effective than use of a constant

predictor.

17



In practice, using a sample of essays to estimate population parameters leads to less

satisfactory results than are obtained if population parameters are known. Thus τ 2
r0 is the

mean-squared error, conditional on the observed essay features in the sample, achieved

when predicting an average holistic score for an essay not in the sample by use of essay

features with regression parameters estimated by the observed sampling data. If data

suggest that τ 2
r0 is excessive for the application but σ2

d is acceptable, then using a larger

sample is appropriate. The absolute loss in mean-squared error due to sampling is τ 2
r0 − σ2

d.

If the estimated value of σ2
d is acceptably small, then the sample size required for τ 2

r0

to have an estimate that is acceptably small can be estimated. In the example, τ 2
r0 is

estimated by s2
r0 = 0.3364. As expected, s2

r0 is larger than the estimated mean-squared error

s2
d = 0.3281. The loss of precision due to estimation of regression coefficients is quantified

in the coefficient I, the relative loss in mean-squared error due to sampling. The estimated

value of I is

Î = (s2
r0 − s2

d)/(s2
d) = (0.3364− 0.3281)/0.3281 = 0.02518,

so that the relative increase in mean-squared error is about 2.5%. This estimated relative

increase is not surprising, for (q + 1)/n = (8 + 1)/373 = 0.02413. Such an increase might

well be considered acceptable. The absolute increase 0.3364 − 0.3281 = 0.008262 also

appears acceptably small.

Given that a sample of essays is used to estimate prediction parameters, an added

measure of interest is ρ2
Y b0, the proportional reduction in mean-squared error achieved by

prediction of average holistic scores by essay features in a sample of essays. The coefficient

ρ2
Y b0 is normally less than ρ2

Y b, and the difference between the two coefficients provides an

added measure of the loss of predictive power due to the effects of parameter estimation

from a sample. For the example, ρ2
Y b0 is estimated by

ρ̂2
Y b0 = 1− s2

r0/s
2
r0C ,

where

s2
r0C = s2

Y b

n

n− 1
= 0.9496(373/372) = 0.9522.
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Thus

ρ̂2
Y b0 = 1− 0.3364/0.9522 = 0.6467.

and the proportional reduction of mean-squared error is about two-thirds. Comparison to

the estimate of ρ2
Y b suggests that the loss due to the estimation of regression coefficients and

means is relatively small. User 2: One who wants to know what proportion of the error in

estimation can be attributed to the raters. This user will be interested in the results that can

be achieved if rater error disappears. This analysis permits the practitioner to distinguish

between prediction error that is inevitable given rater error and prediction error that results

from an imperfect relationship between the true essay score and the essay features. Thus

σ2
dT measures the prediction error of the true essay score by the essay features when all

needed means, variances, and covariances are known, and τ 2
rT0 is the corresponding measure

when regression parameters are estimated from the sample and the essay under study is not

in the sample. For estimation of these measures, one uses the estimated rater variance

σ̂2 = n−1

n∑
i=1

2∑
j=1

(Yij − Ȳi)
2.

Here formulas simplify because each essay has two raters, so that each mi = 2, J is the

set of integers from 1 to n = 373, and nJ = n. The estimate σ̂2 = 0.1260, so that σ̂2
e , the

estimated variance of the average rater error ēi for essay i, is 0.1260/2 = 0.0630. It follows

that the mean-squared error σ2
dT has the estimate

s2
dT = s2

d − σ̂2
e = 0.3281− 0.0630 = 0.2651.

Thus a substantial fraction (0.0630/0.3281=0.192) of the estimated mean-squared error

s2
d for prediction of the average holistic score Ȳi is due to rater variability. In like fashion,

τ 2
rT0 has the estimate

s2
rT0 = s2

r0 − σ̂2
e = 0.3364− 0.0630 = 0.2734.

No matter how large the sample may be, τ 2
rT0 cannot be less than σ2

dT . The difference

between τ 2
rT0 and σ2

dT is the same as the difference between τ 2
r0 and σ2

d; however, σ2
dT is
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less than σ2
d, so that the proportional increase IT in mean-squared error for predicting the

true essay score if sampling is used to estimate regression parameters is greater than the

corresponding proportional increase I for prediction of the average holistic score. In the

example, IT has estimate

ÎT = (0.2734− 0.2651)/0.2651 = 0.03117,

so that the inflation of mean-squared error of about 3% is somewhat larger for predicting

true holistic scores than was the case for predicting average holistic scores.

The proportional reduction ρ2
T in mean-squared error for predicting true essay score

by essay features when all means, covariances, and variances are known is larger than the

corresponding proportional reduction ρ2
Y b in mean-squared error for predicting average

essay scores by essay features. When sampling is required, the proportional reduction ρ2
T0

in mean-squared error for predicting true essay scores by essay features is normally smaller

than ρ2
T . A striking aspect of automated essay scoring is that ρ2

T and ρ2
T0 can be quite high,

say 0.9. In the example, results are less striking. With use of a constant predictor, the

estimated mean-squared error for prediction of T0 is

s2
rT0C = s2

r0C − σ̂2
e = 0.9522− 0.0630 = 0.8892,

so that the estimated proportional reduction in mean-squared error is

ρ̂2
T0 = (0.8892− 0.2734)/0.8892 = 0.6926.

Thus the regression analysis has accounted for about 70% of the mean-squared error that is

not due to rater variability. User 3: One who wants an idea of the errors when one rater

is employed from the data based on two raters per essay. In some cases, a testing program

may consider using an automated score in place of some fixed number M of human ratings

of an essay. Coefficients σ2
dM , τ 2

rM0, IM , ρ2
Y bM , and ρ2

M0 are provided for this case. They

are interpreted as in the case of ordinary prediction of the average holistic score given the

added condition that the number of raters is specified to be M . Illustrations in this report

use M = 1. For the example, the estimated mean-squared error s2
dM for known population
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characteristics is

s2
dT + σ̂2 = 0.2651 + 0.1260 = 0.3911,

while the estimated cross-validation mean-squared error derived from deleted residuals is

s2
rM0 = s2

rT0 + σ̂2 = 0.3994.

Note that, due to use of only one rater rather than two, the predictions of average holistic

scores are somewhat less accurate here than in the original case of two raters. The

corresponding estimated cross-validation mean-squared error with a constant predictor is

s2
rM0C = s2

rT0C + σ̂2 = 0.8892 + 0.1260 = 1.015,

so that the estimated proportional reduction in mean-squared error is

ρ̂2
M0 = (1.015− 0.3994)/1.015 = 0.6066.

The reduced proportional reduction in mean-squared error for one rather than two raters is

predictable. It is also predictable that inflation of mean-squared error is reduced compared

to Î and ÎT for this case. The inflation IM is estimated by

ÎM = (0.3994− 0.3911)/0.3994 = 0.02113.

Thus the inflation of mean-squared error for one rater is about 2% rather than the

approximate 2.5% achieved for two raters.

3.8 Results From Analysis of the Data

To begin, each essay in the four groups of prompts was analyzed. A summary of results

is reported in Table 4. Note that results for Group 1 are omitted for entries that rely on

σ̂2 due to the very limited number of essays that have been double-scored. The case of

M = 1 is considered in the table. Several basic conclusions appear possible, at least for

these groups of prompts. In typical cases, the means of the estimates nÎ of inflation of

mean-squared error are comparable to the ideal value of 9 associated with an intercept

and 8 predictors (i.e., the inflation of mean-squared error due to estimation is roughly
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Table 4.
Summary of Regression Analysis of Individual Essay Prompts Within Groups

Group 1 Group 2 Group 3 Group 4
Statistic Mean S.D. Mean S.D. Mean S.D. Mean S.D.
n 495.9 6.5 456.0 62.0 467.0 14.4 499.8 6.2
s2

r0 0.352 0.061 0.367 0.114 0.289 0.053 0.496 0.201
s2

r0C 0.871 0.084 1.234 0.255 1.688 0.322 1.215 0.297

Î 0.0198 0.0019 0.0225 0.0049 0.0234 0.0028 0.0203 0.0022

nÎ 9.81 0.91 10.05 1.29 10.94 1.18 10.18 1.14
ρ̂2

Y b0 0.593 0.075 0.687 0.131 0.826 0.027 0.602 0.092
s2

rT0 0.309 0.121 0.173 0.052 0.361 0.204
s2

rT0C 1.175 0.261 1.572 0.323 1.080 0.301

ÎT 0.0286 0.0110 0.0415 0.0070 0.0319 0.0081

nÎT 12.69 3.88 19.42 3.69 15.96 4.06
ρ̂2

T0 0.723 0.137 0.888 0.021 0.686 0.119
s2

r10 0.426 0.112 0.404 0.058 0.632 0.198
s2

r10C 1.292 0.251 1.803 0.322 1.351 0.293

Î1 0.0190 0.0033 0.0166 0.0026 0.0154 0.0023

nÎ1 12.69 3.88 7.74 1.10 7.72 1.16
ρ̂2

10 0.655 0.128 0.771 0.039 0.537 0.078

similar to the amount anticipated if the standard assumptions of regression are valid).

Typical estimated inflation Î of mean-squared error is about 2%, a modest value. Even if

typical sample sizes were halved to around 250, the inflation would be doubled to around

4%, a value that could be regarded as tolerable. The available estimates of proportional

reductions in mean-squared error, ρ̂2
Y b0, ρ̂

2
T0, and ρ̂2

10, indicate that families of prompts vary

quite substantially as to how well e-rater predicts human scores, with the best results for

the second and third groups of prompts.

3.9 Combining Essays in Groups

An alternative approach summarizes the data by looking at the prediction of a score

for a group of essays. The initial approach is to use distinct regression coefficients for each

prompt, so that K prompts in effect have K(q + 1) predictors. As evident from Table 5,

results for this approach are quite similar to those for Table 4, except that the proportional
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Table 5.
Summary of Regression Analysis of Essay Prompts Within Groups: Distinct

Coefficients for Each Essay

Statistic Group 1 Group 2 Group 3 Group 4
n 36,697 6,384 12,143 7,997
s2

r0 0.352 0.366 0.288 0.496
s2

r0C 0.892 1.320 1.698 1.355

Î 0.0198 0.0217 0.0235 0.0202

nÎ 727.62 138.68 285.80 161.45
ρ̂2

Y b0 0.605 0.723 0.830 0.634
s2

rT0 0.128 0.307 0.172 0.360
s2

rT0C 0.668 1.262 1.582 1.219

ÎT 0.0568 0.0259 0.0399 0.0280

nÎT 2,083.56 165.54 484.46 224.04
ρ̂2

T0 0.809 0.756 0.891 0.705
s2

r10 0.366 0.424 0.403 0.632
s2

r10C 0.906 1.378 1.813 1.491

Î1 0.0191 0.0187 0.0167 0.0158

nÎ1 700.56 119.35 202.68 126.20
ρ̂2

10 0.596 0.693 0.777 0.576

reduction in mean-squared error is increased slightly. This is because it is computed

relative to a constant predictor for all essays in the entire family rather than relative to a

constant predictor for each prompt. The number of prompts scored in Group 1 is sufficient

for analysis related to true scores; however, results for true scores and for exactly one

score should be approached with caution given that the sampling assumptions appear

questionable. The increase in the estimated product of sample size by relative inflation of

mean-squared error primarily reflects the increased number of predictors present in the

analysis.

Another approach of interest involves a much smaller number of predictors. A linear

model is used for each group in which a separate intercept is used for each prompt, but

the regression coefficients for the predictors are the same for each prompt. Results are

summarized in Table 6. Relative to use of distinct intercepts and regression slopes for each

prompt, estimated losses in mean-squared error are very limited (Groups 1, 2, and 4) or
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Table 6.
Summary of Regression Analysis of Essay Prompts Within Groups: Distinct

Intercepts for Each Essay, Common Regression Slopes

Statistic Group 1 Group 2 Group 3 Group 4
n 36,697 6,384 12,143 7,997
s2

r0 0.360 0.380 0.285 0.503
s2

r0C 0.892 1.320 1.698 1.355

Î 0.0023 0.0036 0.0030 0.0032

nÎ 82.83 22.80 36.03 25.25
ρ̂2

Y b0 0.597 0.712 0.832 0.629
s2

rT0 0.135 0.322 0.169 0.368
s2

rT0C 0.668 1.262 1.582 1.219

ÎT 0.0060 0.0042 0.0050 0.0043

nÎT 221.50 26.93 60.68 34.62
ρ̂2

T0 0.798 0.745 0.893 0.699
s2

r10 0.373 0.4384 0.400 0.639
s2

r10C 0.906 1.378 1.813 1.491

Î1 0.0022 0.0031 0.0021 0.0025

nÎ1 79.86 19.77 25.63 19.87
ρ̂2

10 0.588 0.682 0.779 0.571

nonexistent (Group 3). This approach has much more modest sample-size requirements

than does the approach with individual regression coefficients for each prompt. If the group

contains a substantial number of prompts, then a tolerable inflation of mean-squared error is

obtained with about a tenth of the essays required with individual regression coefficients for

each prompt. If the standard regression model applies, then the inflation of mean-squared

error is approximately the number of prompts plus the number of predictors divided by the

group sample size. In typical applications, the inflation will be approximated by one over

the number of essays per prompt.

An even simpler model for a group of essays ignores the prompt entirely, so that the

same intercepts and the same regression coefficients are applied to each essay in the group.

Results are summarized in Table 7. Although the inflations of mean-squared error are very

small, there is a substantial increase in the actual mean-squared error in Group 1 and in

Group 2. Losses in mean-squared error are also encountered in the other groups, but they
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Table 7.
Summary of Regression Analysis of Essay Prompts Within Groups:

Common Intercepts and Common Regression Slopes

Statistic Group 1 Group 2 Group 3 Group 4
n 36,697 6,384 12,143 7,997
s2

r0 0.398 0.441 0.303 0.558
s2

r0C 0.892 1.320 1.698 1.355

Î 0.0003 0.0015 0.0009 0.0013

nÎ 9.36 9.44 10.78 10.10
ρ̂2

Y b0 0.554 0.666 0.829 0.608
s2

rT0 0.173 0.383 0.175 0.396
s2

rT0C 0.668 1.262 1.582 1.219

ÎT 0.0006 0.0017 0.0015 0.0017

nÎT 21.50 10.87 17.89 13.56
ρ̂2

T0 0.740 0.697 0.889 0.675
s2

r10 0.412 0.499 0.406 0.668
s2

r10C 0.906 1.378 1.813 1.491

Î1 0.0002 0.0013 0.0006 0.0010

nÎ1 9.05 8.34 7.72 8.04
ρ̂2

10 0.546 0.638 0.776 0.552

are very small in Group 3 and modest in Group 4. The one virtue of the approach with

a common regression equation for each prompt is that the sample-size requirements for

the group are similar to those for a single prompt. Thus one could consider use of several

hundred essays for a complete group.

4. Sample-Size Determination for a Cumulative Logit Model

An alternative to linear regression analysis is cumulative logit analysis (Bock, 1973;

Feng, Dorans, Patsula, & Kaplan, 2003; Haberman, 2006; McCullagh & Nelder, 1989;

Pratt, 1981). This alternative has the advantage that approximations of Ȳi and Ti must be

within the range of possible essay scores. A mild disadvantage is that cross-validation is

more difficult to perform with commonly available software.
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4.1 The Statistical Model

The cumlative logit model assumes that, for each essay i, conditional on Xi and mi,

the scores Yij, 1 ≤ j ≤ mi, are independent random variables. For unknown parameters ηg,

1 ≤ g < G, and γk, 1 ≤ k ≤ q, the conditional probability Pig that Yij ≤ g, 1 ≤ g < G,

given Xi, satisfies the cumulative logit relationship

λig = log(Pig/(1− Pig)) = ηg +

q∑
k=1

γkXik.

The method of analysis in this section does not assume that the probability model is true,

just as the regression analysis in the previous section did not assume that the standard

assumptions of linear regression were valid. Let PiG = 1 and Pi0 = 0. The ηg and γk

are unique parameters defined to minimize the expected value of the average logarithmic

penalty L̄i, where L̄i is the average of Lij, 1 ≤ j ≤ mi, and

Lij = − log[Pig − Pi(g−1)]

if Yij = g (Haberman, 1989; Gilula & Haberman, 1994). The cumulative logit model

is evaluated by considering the mean-squared error from approximation of Ȳi by its

corresponding approximated expected value

T ∗iL =
G∑

g=1

g[Pig − Pi(g−1)] = 1 +
G−1∑
g=1

(1− Pig)

given Xi. Maximum likelihood may be applied to the Xi and Yij, 1 ≤ j ≤ mi, for 1 ≤ i ≤ n,

to obtain estimates η̂g of ηg and γ̂k of γk. If maximum-likelihood estimates exist and the

sample covariance matrix of the Xi, 1 ≤ i ≤ n, is nonsingular, then they are uniquely

defined. Common statistical packages such as SAS may be employed for this purpose.

Given the parameter estimates, one may estimate λig by

λ̂ig = η̂g +

q∑
k=1

γ̂kXik

and Pig by

P̂ig = [1 + exp(−λ̂ig)]−1.
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The true score Ti and the mean Ȳi are both estimated by

T̂iL =
G∑

g=1

g[P̂ig − P̂i(g−1)] = 1 +
G−1∑
g=1

(1− P̂ig).

The ηg and γk are uniquely defined as long as the conditional probabilities Pig are strictly

increasing in g for fixed i and the covariance matrix of Xi is positive definite.

An analysis quite similar to that for linear prediction may be considered. The major

change involves cross-validation. To be consistent with the error criterion used with least

squares, consider the mean-squared error

σ2
dL = E(d2

iL),

where

diL = Ȳi − T ∗iL.

The residual sum of squares is

SrL =
n∑

i=1

r2
iL

for

riL = Ȳi − T̂iL.

The mean-squared error of dT iL = Ti − T ∗iL is σ2
dTL = E([dTiL]2), and

σ2
dL = σ2

dTL + σ2/mH . (8)

Conditional on the use of M raters, so that mi = M > 0, the conditional mean-squared

error of T ∗iL as a predictor of Ȳi is

σ2
dML = E(d2

iL|mi = M) = σ2
dTL + σ2/M.

If the cumulative logit model is correct, then the proposed estimation approach is

efficient. If the model is not correct, then it may be the case that η′g and γ′k can be found

such that

E([Ȳi − T ′iL]2) < σ2
dL
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for

T ′iL =
G∑

g=1

g[P ′ig − P ′i(g−1)] = 1 +
G−1∑
g=1

(1− P ′ig),

P ′ig = [1 + exp(−λ′ig)]−1,

and

λ′ig = η′g +

q∑
k=1

γ′kXik.

Given a desire to employ common software in a routine fashion, no attempt has been made

to exploit this possibility.

The proportional reduction of mean-squared error achieved by linear prediction of Ȳi

by T ∗iL instead of by E(Ȳi) is

ρ2
Y bL =

σ2
Y b − σ2

dL

σ2
Y b

. (9)

The proportional reduction of mean-squared error in predicting Ti by T ∗iL instead of by

E(Ti) is

ρ2
TL =

σ2
T − σ2

dTL

σ2
T

= ρ2
Y bLσ

2
Y b/σ

2
T .

Because σ2
T is less than σ2

Y b, ρ
2
TL exceeds ρ2

Y bL. Given that mi = M , the proportional

reduction in mean-squared error in predicting Ti by Ȳi instead of by E(Ti) is

ρ2
Y bML = ρ2

Y bLσ
2
Y b/σ

2
Y bM .

The relationship of ρ2
Y bL to ρ2

Y bML depends on whether M exceeds mH .

4.2 Inflation of Mean-Squared Error

In the case of cumulative logit analysis, cross-validation entails evaluation of the

conditional mean-squared error τ 2
r0L = E(r2

0L|Xi, 1 ≤ i ≤ n) for prediction of Ȳ0 by T̂0L given

the predictors Xi, 1 ≤ i ≤ n. Let fiL = T̂iL − T ∗iL be the difference between the estimated

predictor T̂iL and the actual predictor T ∗iL, and let τ 2
f0L be the conditional expected value

E(f 2
0L|Xi, 1 ≤ i ≤ n) of the squared deviation f 2

0L given the predictors Xi, 1 ≤ i ≤ n. Then

τ 2
r0L = σ2

dL + τ 2
f0L > σ2

dL.
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As the sample size n becomes large, standard large-sample arguments similar to those for

log-linear models (Gilula & Haberman, 1994) show that nτ 2
f0L converges with probability 1

to a constant pL. Of interest is the relative increase

IL = τ 2
r0L/σ

2
dL − 1

in conditional mean-squared error due to parameter estimation. This relative increase is of

order 1/n.

As in the case of linear regression, computations of relative increases in mean-squared

error must be modified to some extent to study increase in error of prediction for the

true essay score Ti. The conditional mean-squared error τ 2
rT0L = E(r2

T0L|Xi, 1 ≤ i ≤ n) is

compared to E([Ti − T ∗iL]2) = σ2
dTL. Because

τ 2
rT0L = σ2

dTL + τ 2
f0L,

the relative increase

ITL = τ 2
rT0L/σ

2
dTL − 1

is ILσ
2
dL/σ

2
dTL > IL.

Similar arguments can be applied to the relative increase IML in mean-squared error

for approximation of Ȳ0 conditional on m0 = M > 0. Given m0 = M, the conditional

mean-squared error

τ 2
rM0L = E([Ȳ0 − T̂iL]2|Xi, 1 ≤ i ≤ n,m0 = M) = τ 2

rT0L + σ2/M

for predicting Ȳ0 by T̂0L is compared to the conditional mean-squared error σ2
dML for

predicting Ȳ0 by T ∗0L. The relative increase in mean-squared error IML is defined as

IML = τ 2
rM0L/σ

2
dML − 1.

4.3 Estimation of Mean-Squared Error

Estimation of mean-squared errors may be accomplished by use of deleted residuals;

however, such a step is rather tedious for cumulative logit models if conventional software
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is used for analysis. An alternative approach may be based on a random division of the

sample indices 1 to n into nearly equal groups (Haberman, 2006). Let U ≥ 2 be the number

of groups employed, and let each group have [n/U ] or [n/U ] + 1 members, where [n/U ]

is the largest integer that does not exceed n/U . The accuracy of results is best for larger

values of U , although computational convenience favors smaller U . Let Ku denote the

collection of indices for group u, let nu be the number of members of Ku, and let T ∗iLu be

the estimate of Ti provided by applying the cumulative logit model to observations with

indices i such that 1 ≤ i ≤ n and i is not in Ku. Let riLu = Ȳi − T ∗iLu be the corresponding

residual. Let

s2
rL = n−1

n∑
i=1

r2
iL,

let

s2
rL1 = (Un)−1

U∑
u=1

n∑
i=1

r2
iLu,

and let

s2
rL2 = n−1

n∑
i=1

r2
iL∗,

where riL∗ = riLu for all i in Ku for 1 ≤ u ≤ U . With probability 1, the conditional

expectation of n(s2
rL − σ2

dL) given Xi, 1 ≤ i ≤ n, converges to a constant qL. Similarly, with

probability 1, the conditional expectation of n(s2
rL2 − σ2

dL) given Xi, 1 ≤ i ≤ n, converges

to pLU/(U − 1), and the conditional expectation of n(s2
rL1 − σ2

dL) given Xi, 1 ≤ i ≤ n,

converges to qL + pL/(U − 1). The arguments required are very similar to those previously

used with multinomial response models (Gilula & Haberman, 1994). The conditional

expectation of n(s2
dL − σ2

dL) given Xi, 1 ≤ i ≤ n, and the conditional expectation of

n(s2
r0L − τ 2

r0L) given Xi, 1 ≤ i ≤ n, both converge to 0 with probability 1. It follows that

σ2
dL may be estimated by

s2
dL = U(s2

rL − s2
rL1) + s2

rL2

and τ 2
r0L may be estimated by

s2
r0L = s2

rL2 − s2
rL1 + s2

rL.
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In large samples, n1/2(s2
r0L − τ 2

r0L) and n1/2(s2
dL − σ2

dL) both have approximate normal

distributions with mean 0 and variance equal to the variance of d2
iL. Again arguments

similar to those required with log-linear models can be applied (Gilula & Haberman, 1994).

4.4 Estimation of τ 2
rT0L and τ 2

rM0L

Estimations of τ 2
rT0L and τ 2

rM0L are accomplished in a manner similar to that for τ 2
rT0

and τ 2
rM0. Assume that mi > 1 with positive probability. Then τ 2

rT0L may be estimated by

s2
rT0L = s2

r0L − σ̂2
e

, and τ 2
rM0L may be estimated by

s2
rM0L = s2

rT0L + σ̂2/M.

4.5 Estimation of σ2
dTL, σ2

dML and Inflations of Mean-Squared Error

The estimate of the relative increase IL in mean-squared error is now

ÎL = (s2
r0L − s2

dL)/s2
dL.

It also follows that an estimate of the value of IL achieved if n∗ observations are used

rather than n is Î∗L = nÎL/n
∗. As in the regression case, this estimate provides a guide to

sample-size selection.

If mi > 1 with positive probability, then σ2
dTL may be estimated by

s2
dTL = s2

dL − σ̂2
e ,

and ITL may be estimated by

ÎTL = (s2
rT0L − s2

dTL)/s2
dTL.

Similar arguments apply to estimation of IML. The estimate of σ2
dML is s2

dML = s2
dTL + σ̂2/M ,

so that IML has the estimate

ÎML = (s2
rM0L − s2

dML)/s2
dML.
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4.6 Estimation of Proportional Reduction in Mean-Squared Error Using

Cross-Validation

As in the regression case, proportional reduction in mean-squared error may also be

considered in terms of cross-validation. For estimation of Ȳ0, consider the proportional

reduction

ρ2
Y b0 =

τ 2
r0C − τ 2

r0L

τ 2
r0C

in mean-squared error. As in regression analysis, τ 2
r0C is the mean-squared error from

prediction of Ȳ0 by Ȳ . In contrast, τ 2
r0L is the mean-squared error from prediction of Ȳ by

T̂0L. The logical estimate of ρ2
Y b0 is

ρ̂2
Y b0L =

s2
r0C − s2

r0L

s2
r0C

.

As the sample size n increases, ρ̂2
Y b0L converges with probability 1 to ρ2

Y bL and ρ2
Y b0L

converges to ρ2
Y bL. In like manner, consider the proportional reduction

ρ2
T0L =

τ 2
rT0C − τ 2

rT0L

τ 2
rT0C

in mean-squared error. Here τ 2
rT0C , as in linear regression, is the mean-squared error from

prediction of T0 by Ȳ . In contrast, τ 2
rT0L is the mean-squared error from prediction of T0 by

T̂0L. The corresponding estimated proportional reduction in mean-squared error is

ρ̂2
T0L = ρ̂2

Y b0L

s2
r0C

s2
rT0C

,

and

ρ2
M0L =

τ 2
rM0C − τ 2

rM0L

τ 2
rM0C

is estimated by

ρ̂2
M0L = ρ̂2

Y b0L

s2
r0C

s2
rM0C

.

4.7 A Practitioner’s Guide to Cumulative Logits

Application of formulas for cumulative logit analysis is somewhat similar to that

for linear regression analysis, although a few changes occur when standard software is

employed. Consider once again the first prompt in the second group of essays. We will
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discuss results for the same three hypothetical users we considered in the practitioner’s

guide for the linear regression model.

First consider User 1, who is interested in the evaluation of performance in prediction

of the average of the two rater scores. In this case, SAS provides the estimates P̂ig − P̂i(g−1)

for g from 1 to G = 6. Use of standard SAS functions permits computation of the estimated

means

T̂iL =
G∑

g=1

g[P̂ig − P̂i(g−1)] = 1 +
G−1∑
g=1

(1− P̂ig),

residuals

riL = Ȳi − T̂iL,

and squared residuals r2
iL. The average squared residual s2

rL is found to be 0.3139, a value

a bit smaller than the corresponding regression estimate of s2
r = 0.3198. To implement

cross-validation, U = 10 is selected. Using a series of SAS macros and computations

of variables leads to an average residual for observations not used in model-fitting of

s2
rL2 = 0.3330. The average residual among all observations for all model fits with deleted

data is s2
rL1 = 0.3141. The estimated value of the conditional mean-squared error τ 2

r0L for

predicting a new average holistic score Ȳ0 by the estimated cumulative logit predictor T̂0L

is then

s2
r0L = s2

rL2 − s2
rL1 + s2

rL = 0.3330− 0.3141 + 0.3139 = 0.3328,

a modest improvement over the corresponding regression value of 0.3364. Similarly, one

may estimate the conditional mean-squared error σ2
dL achieved by prediction of Ȳi by the

predictor T ∗iL obtained through knowledge of the joint distribution of Ȳi and the features

Xik, 1 ≤ k ≤ q. The estimate

s2
dL = U(s2

rL − s2
rL1) + s2

rL2 = 10(0.3139− 0.3141) + 0.3330 = 0.3238

is a bit smaller than is s2
r0L. The estimate s2

dL is also smaller than is the corresponding

estimate s2
d = 0.3281 from regression analysis. The estimated proportional reduction in

mean-squared error

ρ̂2
Y b0L =

s2
r0C − s2

r0L

s2
r0C

=
0.9496− 0.3328

0.9496
= 0.6513
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is slightly larger than the corresponding value ρ̂2
Y b0L = 0.6467 from regression analysis. The

estimated inflation of mean-squared error is

ÎL =
s2

r0L − s2
dL

s2
dL

=
0.3328− 0.3238

0.3328
= 0.02548,

slightly larger than is the corresponding value 0.02518 for regression analysis.

Next, consider User 2, who is interested in investigating prediction errors that are not

due to rater variability. Here σ2
dTL measures the error of prediction of the true essay score by

the essay features when the joint distribution of essay features and holistic scores is known.

The corresponding measure is τ 2
rT0L when cumulative logit parameters are estimated from

the sample and the essay under study is not in the sample. As in the regression case, the

estimated rater variance σ̂2 = 0.1260 is used, so that σ̂2
e , the estimated variance of the

average rater error ēi for essay i, is 0.1260/2 = 0.0630. It follows that the mean-squared

error σ2
dTL has estimate

s2
dTL = s2

dL − σ̂2
e = 0.3238− 0.0630 = 0.2608.

As in regression analysis, a substantial fraction (0.0630/0.3238=0.195) of the estimated

mean-squared error s2
dL for predicting the average holistic score Ȳi is due to rater variability.

In like fashion, τ 2
rT0L has estimate

s2
rT0L = s2

r0L − σ̂2
e = 0.3321− 0.0630 = 0.2691.

The difference between s2
rT0L and the corresponding value s2

rT0 = 0.2733 in regression

analysis reflects the difference between s2
r0L and s2

r0. As in regression analysis, the inflation

ITL in mean-squared error associated with true essay scores has estimate

ÎTL =
0.2733− 0.2608

0.2608
= 0.03164

that is larger than ÎL, the corresponding estimated inflation in mean-squared error for

predicting observed average essay scores. The values of ÎTL for cumulative logit analysis

and ÎT = 0.03117 for regression analysis are quite similar.

As in regression analysis, the proportional reduction ρ2
TL in mean-squared error for

predicting true essay score by essay features when all joint distributions are known is larger
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than the corresponding proportional reduction ρ2
Y bL in mean-squared error for predicting

average essay score by essay features. When sampling is required, the proportional

reduction ρ2
T0L in mean-squared error for predicting true essay score by essay features is

normally smaller than ρ2
TL. The estimated proportional reduction in mean-squared error is

ρ̂2
T0L = (0.8892− 0.2691)/0.8892 = 0.6974,

a value slightly higher than the corresponding estimate ρ̂2
T0 = 0.6926 from regression

analysis.

Finally, consider User 3, who is interested in predicting model performance for

predicting the performance of a single rater (M = 1) using the data based on two raters per

essay. Coefficients σ2
dML, τ 2

rM0L, IML, and ρ2
Y bML are considered here. For the example, the

estimated mean-squared error s2
dML for known population characteristics is

s2
dTL + σ̂2 = 0.2608 + 0.1260 = 0.3868,

while the estimated cross-validation mean-squared error is

s2
rM0L = s2

rT0L + σ̂2 = 0.3951.

The estimated proportional reduction in mean-squared error is

ρ̂2
M0L = (1.015− 0.3951)/1.015 = 0.6108,

a value slightly lower than the corresponding regression estimate ρ̂2
M0 = 0.6066. Inflation of

mean-squared error is similar to that found in the regression case. For cumulative logits,

ÎML = (0.3951− 0.3868)/0.3951 = 0.02133.

The comparable value for regression analysis is ÎM = 0.02113.

4.8 Results From Analysis of the Data

Data analysis with cumulative logits was performed in a manner similar to that for

regression. We used U = 10 in the cross-validation calculations. First, each essay in

35



Table 8.
Summary of Cumulative Logit Analysis of Individual Essay Prompts Within

Groups

Group 1 Group 2 Group 3 Group 4
Statistic Mean S.D. Mean S.D. Mean S.D. Mean S.D.
n 495.9 6.5 456.0 62.0 467.0 14.4 499.8 6.2
s2

r0L 0.335 0.061 0.350 0.118 0.230 0.039 0.443 0.184
s2

r0C 0.871 0.084 1.234 0.255 1.688 0.322 1.215 0.297

ÎL 0.0198 0.0034 0.0227 0.0055 0.0233 0.0036 0.0195 0.0040

nÎL 9.60 1.67 10.13 1.83 10.86 1.61 9.74 1.97
ρ̂2

Y b0L 0.613 0.079 0.699 0.137 0.859 0.033 0.643 0.096
s2

rT0L 0.292 0.125 0.115 0.036 0.307 0.187
s2

rT0C 1.175 0.261 1.572 0.323 1.080 0.301

ÎTL 0.0290 0.0091 0.0504 0.0120 0.0335 0.0123

nÎTL 12.90 3.16 23.6 5.9 16.8 6.1
ρ̂2

T0L 0.736 0.144 0.926 0.019 0.732 0.120
s2

r10L 0.408 0.116 0.345 0.046 0.570 0.178
s2

r10C 1.292 0.251 1.803 0.322 1.351 0.293

Î1L 0.0191 0.0050 0.0153 0.0026 0.0144 0.0034

nÎ1L 8.55 1.78 7.15 1.15 7.17 1.64
ρ̂2

10L 0.667 0.134 0.802 0.046 0.574 0.085

the four groups of prompts was analyzed. A summary of results is reported in Table 8.

Several basic conclusions appear possible for these groups of prompts. Cumulative logit

analysis results in a notable reduction in mean-squared error compared to linear regression.

Inflation in mean-squared error due to estimation of parameters is quite comparable to

that encountered with regression. Thus sample-size recommendations are similar to those

for regression analysis. The general pattern of relative success of prediction for different

groups, at least as measured by proportional reduction in mean-squared error, is the same

as for regression analysis.

4.9 Combining Essays in Groups

As in the regression case, an alternative approach summarizes the data by looking

at the prediction of a score for a group of essays. The initial approach is to use distinct
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Table 9.
Summary of Cumulative Logit Analysis of Essay Prompts Within

Groups:Distinct Coefficients for Each Essay

Statistic Group 1 Group 2 Group 3 Group 4
n 36,697 6,384 12,143 7,997
s2

r0 0.352 0.366 0.288 0.443
s2

r0C 0.892 1.320 1.698 1.355

Î 0.0194 0.0225 0.0232 0.0196

nÎ 711.15 143.57 281.71 156.78
ρ̂2

Y b0 0.605 0.723 0.856 0.636
s2

rT0 0.109 0.292 0.115 0.307
s2

rT0C 0.668 1.262 1.582 1.219

ÎT 0.0620 0.0271 0.0476 0.0285

nÎT 2,273.86 172.88 578.40 228.12
ρ̂2

T0 0.837 0.769 0.928 0.748
s2

r10 0.347 0.408 0.345 0.578
s2

r10C 0.906 1.378 1.813 1.491

Î1 0.0186 0.0192 0.0153 0.0149

nÎ1 683.28 122.78 186.20 119.43
ρ̂2

10 0.617 0.704 0.810 0.612

parameters for each prompt, so that K prompts involve K(q + G) parameters. As evident

from Table 9, results for this approach are quite similar to those shown in Table 8, except

that the proportional reduction in mean-squared error is increased slightly because it is

computed relative to a constant predictor for all essays in the entire family rather than

relative to a constant predictor for each prompt. The number of prompts scored in Group

1 is sufficient for analysis related to true scores; however, results for true scores and for

exactly one score should be approached with caution given that the sampling assumptions

appear questionable. The increase in the estimated product of sample size by relative

inflation of mean-squared error primarily reflects the increased number of predictors present

in the analysis.

As with a previous regression analysis, one may consider a model in which, for all

prompts in a group, the slope for a feature is constant but the intercept is sum of a

score effect and a prompt effect, so that q + G + K − 1 parameters are used. Results are
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Table 10.
Summary of Cumulative Logit Analysis of Essay Prompts Within Groups:

Distinct Intercepts for Each Essay, Common Slopes

Statistic Group 1 Group 2 Group 3 Group 4
n 36,697 6,384 12,143 7,997
s2

r0L 0.342 0.361 0.231 0.454
s2

r0C 0.892 1.320 1.698 1.355

ÎL 0.0023 0.0034 0.0036 0.0027

nÎL 83.62 21.49 42.98 21.64
ρ̂2

Y b0L 0.617 0.726 0.864 0.665
s2

rT0L 0.117 0.303 0.115 0.318
s2

rT0C 0.668 1.262 1.582 1.219

ÎTL 0.0067 0.0040 0.0071 0.0039

nÎTL 245.53 25.62 86.27 30.91
ρ̂2

T0L 0.825 0.760 0.927 0.739
s2

r10L 0.355 0.4194 0.346 0.590
s2

r10C 0.906 1.378 1.813 1.491

Î1L 0.0022 0.0029 0.0024 0.0021

nÎ1L 80.47 18.51 28.62 16.65
ρ̂2

10L 0.608 0.696 0.809 0.604

summarized in Table 10. Relative to using distinct intercepts and regression slopes for each

prompt, estimated losses in mean-squared error are very limited (Groups 1, 2, and 4) or

nonexistent (Group 3). This approach has much more modest sample-size requirements

than does the approach with individual regression coefficients for each prompt and produce

a tolerable inflation of mean-squared error with about a tenth of the essays for each prompt.

Note that this approach does require that the group contains a substantial number of

prompts.

The simplest model for a group of essays ignores the prompt entirely, so that only

G + q parameters are needed. Results are summarized in Table 11. As in the regression

case, although the inflations of mean-squared error are very small, the tradeoff is a

substantial increase in the actual mean-squared error in Group 1 and in Group 2. Losses

in mean-squared error are also encountered in the other groups, but they are very small in

Group 3 and modest in Group 4. As in the regression case, the virtue of the approach with
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Table 11.
Summary of Cumulative Logit Analysis of Essay Prompts Within Groups:

Common Intercepts and Common Regression Slopes

Statistic Group 1 Group 2 Group 3 Group 4
n 36,697 6,384 12,143 7,997
s2

r0L 0.384 0.425 0.235 0.482
s2

r0C 0.892 1.320 1.698 1.355

ÎL 0.0002 0.0011 0.0009 0.0010

nÎL 9.13 6.89 10.94 7.96
ρ̂2

Y b0L 0.569 0.678 0.862 0.644
s2

rT0L 0.160 0.367 0.120 0.347
s2

rT0C 0.668 1.262 1.582 1.219

ÎTL 0.0006 0.0013 0.0018 0.0014

nÎT 21.96 7.99 21.50 11.08
ρ̂2

T0 0.760 0.709 0.924 0.716
s2

r10 0.398 0.483 0.350 0.618
s2

r10C 0.906 1.378 1.813 1.491

Î1 0.0002 0.0010 0.0006 0.0008

nÎ1 8.82 6.07 7.34 6.21
ρ̂2

10 0.569 0.650 0.807 0.585

a common equation for each prompt is that the sample-size requirements for the group are

similar to those for a single prompt. Thus one could consider use of several hundred essays

for a complete group.

Each cumulative logit model performs better than its corresponding regression model,

making the cumulative logit approach attractive. The gains for the cumulative logit method

are somewhat variable.

5. Conclusions

This paper employs cross-validation methods to assess sample-size requirements both

for cumulative logit and ordinary regression models. Sample-size requirements depend on

the application and on the e-rater features used. In typical cases in which content analysis

is not employed and the only object is to score individual essays to provide feedback to

the examinee, it appears that several hundred essays are quite sufficient to limit variance
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inflation to less than 5%. For a large family of essays, fewer than 100 essays per prompt

may often be adequate.

Sample-size requirements when content is assessed appear to be much larger (Haberman,

2006), and proper analysis requires significant modifications to currently used software.

These recommendations are not appropriate for all potential uses. If e-rater is used

within an equated assessment or if substantial groups of students are to be compared by

using e-rater, then sample-size requirements may be much higher.

For the examples in this report, using common parameters for essay features for all

prompts within a family appears to be an attractive option, but completely ignoring all

effects related to prompts appears to be less attractive. Nonetheless, for the third group

of prompts, ignoring all prompt effects was strikingly successful. Treatment of groups of

prompts therefore appears to require treatment on a case-by-case basis.

An important finding in this paper is that the cumulative logit model typically

performed somewhat better than did ordinary regression analysis. Although cumulative

logit analysis requires more difficult cross-validation than does ordinary regression analysis,

the cross-validation is hardly burdensome using standard statistical software. For electronic

essay scoring, cumulative logit analysis should be considered a very attractive alternative

to regression analysis. Conceptually, a cumulative logit model makes more sense than an

ordinary regression model in electronic essay scoring because the observed responses (i.e.,

the essay scores) are categorical, with usually four to six categories. For all the groups

of essays examined, the average mean-squared error for the cumulative logit model is

less, often substantially less, than that for the ordinary regression model. In addition,

the requirements in terms of sample size for the cumulative logit model appear to be

comparable to those for ordinary regression. Consequently, our research indicates that it

may be worthwhile to replace the ordinary regression model with a cumulative logit model

in electronic essay-scoring software packages.
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Appendix

Proof That an Estimate of σ2
d is s2

d = (s2
r + s2

r0)/2

Equations 5 and 6 suggest that for large n,

n(τ 2
r0 − σ2

d) ≈ σ2
d + Z, (A1)

where Z = tr([Cov(X)]−1 Cov(dX)). Equation A1 suggests that

σ2
d ≈ (τ 2

r0 − Z/n)(1 + 1/n)−1

≈ (τ 2
r0 − Z/n)(1− 1/n)

≈ τ 2
r0 − τ 2

r0/n− Z/n.

By Equation 7,

σ2
d ≈ τ 2

r0 − τ 2
r0/n−

1

2
[τ 2

r0 − s2
r(1 + 2/n)]·

Replacing τ 2
r0 by its estimate s2

r0,

σ2
d ≈

s2
r0 + s2

r

2
+ (s2

r − τ 2
r0)/n

≈ s2
r0 + s2

r

2
·
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